Ultrasonic Wave Feature Extraction for Neural Network Classification in not Accessible Pipes

نویسنده

  • G. ACCIANI
چکیده

The ultrasonic inspection technique can be very useful to determine the state of non reachable structure. In this paper a method based on the neural network classification to evaluate the corrosion level of non accessible pipes is shown. A set of optimal features constitutes the database and feeds the neural network. These features are chosen by time and frequency features extracted from simulated ultrasonic waves. The results show that the method perform a good recognition rate and the different classes are useful for the human decision to evaluate the corrosion level of the pipe under test. Key-Words: Ultrasonic waves, Neural networks, k-nearest neighbour, non accessible pipes, feature extraction, non destructive evaluation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten

Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...

متن کامل

Classification of Iranian traditional musical modes (DASTGÄH) with artificial neural network

The concept of Iranian traditional musical modes, namely DASTGÄH, is the basis for the traditional music system. The concept introduces seven DASTGÄHs. It is not an easy process to distinguish these modes and such practice is commonly performed by an experienced person in this field. Apparently, applying artificial intelligence to do such classification requires a combination of the basic infor...

متن کامل

An Improved Fuzzy Neural Network for Solving Uncertainty in Pattern Classification and Identification

Dealing with uncertainty is one of the most critical problems in complicatedpattern recognition subjects. In this paper, we modify the structure of a useful UnsupervisedFuzzy Neural Network (UFNN) of Kwan and Cai, and compose a new FNN with 6 types offuzzy neurons and its associated self organizing supervised learning algorithm. Thisimproved five-layer feed forward Supervised Fuzzy Neural Netwo...

متن کامل

Neural NDT by means of Reflected Longitudinal and Torsional Waves Modes in Long and Inaccessible Pipes

The design of Non-Destructive Testing systems for fault detection in long and not accessible pipelines is an actual task in the industrial and civil environment. At this purpose the diagnosis based on the propagation of guided ultrasonic waves along the pipes offers an attractive solution for the fault identification and classification. The authors studied this problem by means of suitable Arti...

متن کامل

Study on Feature Extraction and Classification of Ultrasonic Flaw Signals

One of the most important techniques of ultrasonic flaw classification is feature extraction of flaw signals,which directly affects the accuracy and reliability of flaw classification.Based on the non-stationary characteristic of ultrasonic flaw signals, a new feature extraction method of ultrasonic signals based on empirical mode decomposition (EMD) is put forward in the paper. Firstly, the or...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005